Mzt1/Tam4, a fission yeast MOZART1 homologue, is an essential component of the γ-tubulin complex and directly interacts with GCP3Alp6
نویسندگان
چکیده
In humans, MOZART1 plays an essential role in mitotic spindle formation as a component of the γ-tubulin ring complex. We report that the fission yeast homologue of MOZART1, Mzt1/Tam4, is located at microtubule-organizing centers (MTOCs) and coimmunoprecipitates with γ-tubulin Gtb1 from cell extracts. We show that mzt1/tam4 is an essential gene in fission yeast, encoding a 64-amino acid peptide, depletion of which leads to aberrant microtubule structure, including malformed mitotic spindles and impaired interphase microtubule array. Mzt1/Tam4 depletion also causes cytokinesis defects, suggesting a role of the γ-tubulin complex in the regulation of cytokinesis. Yeast two-hybrid analysis shows that Mzt1/Tam4 forms a complex with Alp6, a fission yeast homologue of γ-tubulin complex protein 3 (GCP3). Biophysical methods demonstrate that there is a direct interaction between recombinant Mzt1/Tam4 and the N-terminal region of GCP3(Alp6). Together our results suggest that Mzt1/Tam4 contributes to the MTOC function through regulation of GCP3(Alp6).
منابع مشابه
Fission yeast MOZART1/Mzt1 is an essential γ-tubulin complex component required for complex recruitment to the microtubule organizing center, but not its assembly
γ-Tubulin plays a universal role in microtubule nucleation from microtubule organizing centers (MTOCs) such as the animal centrosome and fungal spindle pole body (SPB). γ-Tubulin functions as a multiprotein complex called the γ-tubulin complex (γ-TuC), consisting of GCP1-6 (GCP1 is γ-tubulin). In fungi and flies, it has been shown that GCP1-3 are core components, as they are indispensable for γ...
متن کاملMOZART1 and γ-tubulin complex receptors are both required to turn γ-TuSC into an active microtubule nucleation template
MOZART1/Mzt1 is required for the localization of γ-tubulin complexes to microtubule (MT)-organizing centers from yeast to human cells. Nevertheless, the molecular function of MOZART1/Mzt1 is largely unknown. Taking advantage of the minimal MT nucleation system of Candida albicans, we reconstituted the interactions of Mzt1, γ-tubulin small complex (γ-TuSC), and γ-tubulin complex receptors (γ-TuC...
متن کاملSynergistic role of fission yeast Alp16GCP6 and Mzt1MOZART1 in γ-tubulin complex recruitment to mitotic spindle pole bodies and spindle assembly
In fission yeast, γ-tubulin ring complex (γTuRC)-specific components Gfh1(GCP4), Mod21(GCP5), and Alp16(GCP6) are nonessential for cell growth. Of these deletion mutants, only alp16Δ shows synthetic lethality with temperature-sensitive mutants of Mzt1(MOZART1), a component of the γTuRC required for recruitment of the complex to microtubule-organizing centers. γ-Tubulin small complex levels at m...
متن کاملXgrip109: A γ Tubulin–Associated Protein with an Essential Role in γ Tubulin Ring Complex (γTuRC) Assembly and Centrosome Function
Previous studies indicate that gamma tubulin ring complex (gammaTuRC) can nucleate microtubule assembly and may be important in centrosome formation. gammaTuRC contains approximately eight subunits, which we refer to as Xenopus gamma ring proteins (Xgrips), in addition to gamma tubulin. We found that one gammaTuRC subunit, Xgrip109, is a highly conserved protein, with homologues present in yeas...
متن کاملNMR secondary structure and interactions of recombinant human MOZART1 protein, a component of the gamma‐tubulin complex
Mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1) is an 8.5 kDa protein linked to regulation of γ-tubulin ring complexes (γTuRCs), which are involved in nucleation of microtubules. Despite its small size, MOZART1 represents a challenging target for detailed characterization in vitro. We described herein a protocol for efficient production of recombinant human MO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 24 شماره
صفحات -
تاریخ انتشار 2013